

## Set to Lead Report Launch

JOBS FOR THE BOYS? WHERE DO ENGINEERING UNDERGRADUATES GO?

DR SEAN McWHINNIE OXFORD RESEARCH AND POLICY Dr Jan Peters Katalytik





# Set to Lead

# supporting female undergraduates into successful STEM careers

SET to Lead team: Jan Peters, Sean McWhinnie Helen Duguid, Karen Dickens and Anthony Finkelstein



#### **Action research**

Anecdote: Women don't perform as well at assessment centres

FACT: In 2006/07, twice the proportion of men graduating with undergraduate qualifications in STEM entered SET professional or associate professional occupations (41.8 per cent) compared with women (21.0 per cent)

### Questions

- Evidence the numbers
- Explore assessment centre performance by gender
- Explore graduates experience by survey

### Outputs

- short report
- inclusive assessment centres good practice guide
- Resources and insights







### HEI survey and roundtable current leadership best practice

Industry roundtable leadership needs, desires & training - brainstorm of leadership skills activities

Modules to be used to support course materials

On-site industry open days for women students – video students and leaders Seminar development based on how to use videos and introduce leadership styles

Underpinning research on the undergraduate experience, initial employment destinations and success at assessment centres



- The retention of female SET graduates is much lower than their male counterparts which constrains the pipeline.
- Increasing the diversity of the SET workforce through the recruitment and retention of women and promoting technically qualified women into executive roles requires a focus on the early part of the career pipeline and on developing leadership skills.



# Academic progression in Mechanical, Aero & Production Engineering by gender, 2007/08



Data source: HESA (2008)



### Academic progression in physics by gender, 2007/08





Data source: HESA (2008)



### **Course destinations of accepted applicants with physics A-level in 2011**

| Males                                 |      | Females                                   |      |
|---------------------------------------|------|-------------------------------------------|------|
| Course destination                    | %    | Course destination                        | %    |
| Mechanical Engineering                | 10.9 | Mathematics                               | 10.5 |
| Physics                               | 10.3 | Physics                                   | 7.5  |
| Mathematics                           | 8.5  | Pre-clinical Medicine                     | 5.7  |
| Civil Engineering                     | 5.8  | Chemistry                                 | 4.5  |
| Electronic and Electrical Engineering | 4.8  | Civil Engineering                         | 3.8  |
| Computer Science                      | 4.7  | Mechanical Engineering                    | 3.4  |
| Aerospace Engineering                 | 4.2  | Combs of 3 subjects, or other gen courses | 3.3  |
| Chemistry                             | 3.6  | Architecture                              | 3.3  |
| General Engineering                   | 3.4  | Others in Subjects allied to Medicine     | 2.5  |
| Pre-clinical Medicine                 | 3.0  | Chemical, Process and Energy Engineering  | 2.4  |

Data source: UCAS/IOP



## **Research elements**

- Secondary analysis of HESA data, including DLHE data
- On-line survey investigating the variation of undergraduates' career intentions through the course of study.
  - 4,624 cleaned responses
  - 1,200 from women





# Full time students completing first degree courses in 2009/10

| Subject                  | Total Students | Female |
|--------------------------|----------------|--------|
| Aeronautical Engineering | 1425           | 10.5%  |
| Chemical Engineering     | 1175           | 27.0%  |
| Civil Engineering        | 3575           | 16.3%  |
| Electronic Engineering   | 4650           | 13.7%  |
| General Engineering      | 1410           | 20.4%  |
| Mechanical Engineering   | 4350           | 8.8%   |
| Production Engineering   | 1190           | 23.6%  |
| Computing Science        | 3015           | 28.6%  |







# Most likely intended initial destinations of survey respondents in the final year of engineering courses





### **Top 10 companies: all respondents**

| Rank | Male (N=2669)     |       | Female (N=734) |      |
|------|-------------------|-------|----------------|------|
| 1    | Rolls Royce       | 15.0% | Arup           | 9.5% |
| 2    | BAE Systems       | 9.9%  | Google         | 7.5% |
| 3    | Google            | 8.8%  | Microsoft      | 7.5% |
| 4    | Microsoft         | 8.1%  | Rolls Royce    | 7.2% |
| 5    | BP                | 6.7%  | Atkins         | 5.6% |
| 6    | Jaguar Land Rover | 6.1%  | BP             | 5.2% |
| 7    | Apple             | 5.8%  | Apple          | 4.5% |
| 8    | Arup              | 5.5%  | Balfour Beatty | 4.2% |
| 9    | IBM               | 5.1%  | IBM            | 4.2% |
| 10   | Airbus            | 4.4%  | Airbus         | 4.1% |





### **Top 10 companies: mechanical engineering**

| Rank | Male (N=521)      |       | Female (N=74)     |       |
|------|-------------------|-------|-------------------|-------|
| 1    | Rolls Royce       | 31.5% | Rolls Royce       | 20.3% |
| 2    | Jaguar Land Rover | 16.9% | BP                | 10.8% |
| 3    | BAE System        | 16.5% | Jaguar Land Rover | 10.8% |
| 4    | McLaren           | 12.3% | McLaren           | 10.8% |
| 5    | BP                | 9.0%  | Shell             | 10.8% |
| 6    | Aston Martin      | 6.7%  | Airbus            | 8.1%  |
| 7    | Shell             | 6.5%  | BAE Systems       | 8.1%  |
| 8    | Airbus            | 6.3%  | ARUP              | 4.1%  |
| 9    | BMW               | 3.8%  | Caterpillar       | 4.1%  |
| 10   | Audi              | 2.7%  | EDF Energy        | 4.1%  |



### **Top 10 companies: computer science**

| Rank | Male (N=509)               |       | Female (N=155)             |       |
|------|----------------------------|-------|----------------------------|-------|
| 1    | Google                     | 35.2% | Microsoft                  | 32.9% |
| 2    | Microsoft                  | 34.4% | Google                     | 30.3% |
| 3    | IBM                        | 16.9% | IBM                        | 14.8% |
| 4    | Apple                      | 12.4% | Apple                      | 12.9% |
| 5    | Cisco Systems              | 6.3%  | Liberty IT                 | 7.1%  |
| 6    | Intel                      | 5.9%  | GCHQ/Military Intelligence | 7.1%  |
| 7    | GCHQ/Military Intelligence | 4.7%  | BT                         | 6.5%  |
| 8    | Facebook                   | 4.1%  | Kainos                     | 6.5%  |
| 9    | British Telecom            | 3.1%  | CITI                       | 5.2%  |
| 10   | Blizzard                   | 2.9%  | Intel                      | 5.2%  |





# Main activities of graduates in engineering subjects in 2008/09 and 2009/10





# Comparison of proportion of engineering survey respondents who intend to work in E&T roles with graduates who work in E&T roles





### UK domiciled graduates from engineering subjects <u>in full time or</u> <u>part time work</u> 2008/09 and 2009/10





# The STEM occupations of UK domiciled graduates from engineering subjects in <u>full time or part time work</u> 2008/09 and 2009/10





- In general women are less likely to enter SET roles even though both men and women are equally likely to state that they wish to
- This appears to be related to the lower "career confidence" of women E&T students







# Do final year students believe they possess the technical skills that employers want?





#### I feel confident that I will make a good engineer/ technologist





 Key actions are around building the confidence of women engineering and technology students





Defining and developing the outputs to support women: foundations for inclusion

# **DR JAN PETERS**







### Why are we losing women?

Better offer from elsewhere





Put off engineering during course

#### Put off during recruitment





What we explored as 'fixes'

- Behaviours of students
- Course content on teaming and leadership
- Where students want to go and where they go
- Support resources to help facilitate learning for employability skills so students get the jobs that are right for them







### Academics' views

senior women role models

Lack of visible female

Male student behaviours

#### Roles women play in teams

Lower confidence of women Possible marginalisation of women students through unconscious bias





### Employers' views



High expectations of male students (by staff and themselves)



Not

applying



### What we could tackle

- How to establish an appreciation of others' strengths
- Challenging problems with no clear right or wrong answer
- Scenario based activities that were based on real life situations
- Role models from science and engineering
- To hear stories from leaders about when things went wrong or they were challenged
- To be able to introduce leadership and team skills in a way that did not require an in depth knowledge





# Leaders supporting scenarios







### Workshops and events











### Workshops and events







## Workshops and events























## Links to reports and further information

## www.katalytik.co.uk

